events1
'HUS' (3 chars)
events
16 (integer)
Personalisierte Therapie von Hirntumoren

Je früher wir über den Mutationsstatus Bescheid wissen, desto optimaler können wir die Behandlung individualisieren. «Prof. Andreas Stadlbauer, Medizinphysiker am Universitätsklinikum St. Pölten»

Personalisierte Therapie von Hirntumoren

Publiziert

Künstliche Intelligenz identifiziert Mutationen: Universität in Österreich setzt Standards mit Machine-Learning-Methoden.

Machine-Learning(ML)-Methoden können Mutationen in Gliomen – primären Hirntumoren – rasch und akkurat diagnostizieren. Das zeigt eine Studie der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL Krems). In dieser wurden Daten von physio-metabolischen Magnetresonanz-Bildern zur Identifikation von Mutationen eines Stoffwechselgens mittels ML ausgewertet. Mutationen dieses Gens beeinflussen den Krankheitsverlauf massgeblich, und eine frühe Diagnose ist für die Behandlung wichtig. Die Studie zeigt auch, dass dem klinischen Routineeinsatz der Methode aktuell jedoch noch uneinheitliche Standards bei der Gewinnung physio-metabolischer Magnetresonanz-Bilder entgegenstehen.

Gliome sind die häufigsten Primärtumore des Gehirns. Trotz noch immer schlechter Prognose können personalisierte Therapien den Behandlungserfolg aber bereits massgeblich verbessern. Doch der Einsatz solcher modernen Therapien beruht auf individuellen Tumordaten, die bei Gliomen aufgrund ihrer Lokalisation im Gehirn nicht leicht verfügbar sind. Bildgebende Verfahren wie die Magnetresonanztomographie (MRT) können solche Daten liefern, ihre Auswertung ist jedoch komplex, anspruchsvoll und zeitaufwendig. Das Zentralinstitut für medizinische Radiologie-Diagnostik des Universitätsklinikums St. Pölten, einem Lehr- und Forschungsstandort der KL Krems, entwickelt daher seit Jahren Methoden des Machine und Deep Learning, um solche Auswertungen zu automatisieren und so in den Routinebetrieb von Kliniken integrieren zu können. Nun gelang dort ein weiterer Durchbruch.

Positive Mutationen

«Tatsächlich haben Patientinnen und Patienten, deren Gliomzellen eine mutierte Form des Gens für Isocitratdehydrogenase (IDH) tragen, bessere klinische Aussichten als jene, bei denen die Wildtypform vorliegt. Das bedeutet: Je früher wir über diesen Mutationsstatus Bescheid wissen, desto optimaler können wir die Behandlung individualisieren», erläutert Prof. Andreas Stadlbauer, Medizinphysiker am Zentralinstitut. Dabei helfen Unterschiede im Energiestoffwechsel von mutierten beziehungsweise Wildtyp-Tumoren. Diese können – dank früheren Arbeiten des Teams um Prof. Stadlbauer – auch ohne Gewebeproben mittels sogenannter physio-metabolischer MRT gut erfasst werden. Doch die Auswertung und Beurteilung der Daten sind eine hochkomplexe und zeitraubende Angelegenheit, die schwer in den klinischen Routinebetrieb zu integrieren ist, zumal Ergebnisse aufgrund der schlechten Prognose für Betroffene rasch erforderlich sind. In der aktuellen Studie hat das Team daher diese Daten mittels ML-Methoden analysiert und ausgewertet, um auf diese Weise rascher ein Ergebnis zu erhalten und entsprechende Therapieschritte einleiten zu können. Aber wie präzise sind die dabei erzielten Ergebnisse? Um dies zu beurteilen, wurde in der Studie zunächst auf Daten von 182 Patientinnen und Patienten des Universitätsklinikums St. Pölten zurückgegriffen, deren MRT-Daten nach einheitlichen Protokollen erhoben wurden. «Wir erzielten eine Präzision von 91,7 Prozent und eine Genauigkeit von 87,5 Prozent bei der Unterscheidung zwischen Tumoren mit dem Wildtyp-Gen oder der mutierten Form. Wir verglichen diese Werte dann auch mit ML-Auswertungen von klassischen klinischen MRT-Daten und konnten zeigen, dass die Verwendung von physio-metabolischen MRT-Daten als Grundlage eindeutig bessere Ergebnisse erzielte», so Stadlbauer.

Diese Überlegenheit galt jedoch nur so lang, wie die Analyse an den in St. Pölten – nach einheitlichem Protokoll – erhobenen Daten erfolgte. Das zeigte sich, als die ML-Methode auf externe Daten, also MRT-Daten aus Datenbanken anderer Krankenhäuser, angewendet wurde. In diesem Fall erwies sich die ML-Methode als erfolgreicher, die mit klassischen klinischen MRT-Daten trainiert worden war. «Dass die ML-Auswertung der physio-metabolischen MRT-Daten hier schlechter abschnitt, liegt daran, dass die Technik noch jung und in einer experimentellen Entwicklungsphase ist», sagt Stadlbauer.

Doch dieses Problem ist für den Wissenschafter «nur» eines der Standardisierung, die mit zunehmendem Einsatz physio-metabolischer MRTs an verschiedenen Krankenhäusern unweigerlich kommen wird. Die Methode selbst – die zeitsparende Auswertung physio-metabolischer MRT-Daten durch ML-Methoden – hätte sich grossartig bewährt, so der Professor. Sie bietet damit einen hervorragenden Ansatz, um zukünftig präoperativ den IDH-Mutationsstatus von Gliom-Betroffenen zu erheben und Therapieoptionen zu individualisieren.

KL Krems

Die Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL Krems) ist eine europaweit anerkannte Bildungs- und Forschungseinrichtung am Campus Krems. Die KL Krems bietet eine moderne, bedarfsorientierte Aus- und Weiterbildung in der Medizin und Psychologie sowie ein PhD-Programm im Bereich Mental Health and Neuroscience an. Das flexible Bildungsangebot ist auf die Bedürfnisse der Studierenden, die Anforderungen des Arbeitsmarkts sowie auf die Herausforderungen der Wissenschaft abgestimmt. Die drei Universitätskliniken in Krems, St. Pölten und Tulln sowie das Ionentherapie- und Forschungszentrum MedAustron in Wiener Neustadt gewährleisten eine klinische Lehre und Forschung auf höchstem Qualitätsniveau. In der Forschung konzentriert sich die KL auf interdisziplinäre Felder mit hoher gesundheitspolitischer Relevanz – u. a. der Biomechanik, der molekularen Onkologie, der mentalen Gesundheit und den Neurowissenschaften sowie dem Thema Wasserqualität und den damit verbundenen gesundheitlichen Aspekten.

EVENTS

aqua pro

B2B-Plattform in der Schweiz für Fachkräfte des globalen Wasserkreislaufs

Datum: 04.-06. Februar 2026

Ort: Bulle (CH)

analytica

Weltleitmesse für Labortechnik, Analytik, Biotechnologie und analytica conference

Datum: 24.-27. März 2026

Ort: München (D)

Techtextil

Internationale Leitmesse für technische Textilien und Vliesstoffe

Datum: 21.-24. April 2026

Ort: Frankfurt am Main (D)

PFLEGE PLUS

Die Fachmesse PFLEGE PLUS bringt Fachbesucher mit ausstellenden Unternehmen, Branchenverbände sowie Experten des Pflegemarkts zusammen.

Datum: 05.-07. Mai 2026

Ort: Stuttgart (D)

interpack

Führende Messe für Prozesse und Verpackung

Datum: 07.-13. Mai 2026

Ort: Düsseldorf (D)

ArbeitsSicherheit Schweiz

Fachmesse für Arbeitssicherheit, Gesundheitsschutz und Gesundheitsförderung am Arbeitsplatz

Datum: 20.-21. Mai 2026

Ort: Zürich (CH)

MedtecLIVE with T4M

Fachmesse für die gesamte Wertschöpfungskette der Medizintechnik

Datum: 05.-07. Juni 2026

Ort: Stuttgart (D)

all about automation

Fachmesse für Industrieautomation

Datum: 26.-27. August 2026

Ort: Zürich (CH)

Ilmac Lausanne

Networking. Forum. Aussteller

Datum: 23.-24. September 2026

Ort: Lausanne (CH)

Chillventa

Weltleitmesse der Kältetechnik

Datum: 13.-15. Oktober 2026

Ort: Nürnberg (D)

ZAGG

DER BRANCHENTREFFPUNKT MIT RELEVANTEN GASTRO-TRENDS

Datum: 18.-21. Oktober 2026

Ort: Luzern (CH)

SIAL

Fachmesse für Nahrungsmittel-Innovationen

Datum: 17.-21. Oktober 2026

Ort: Paris (F)

ALL4PACK EMBALLAGE

The global marketplace for Packaging Processing Printing Handling

Datum: 23.-26. November 2026

Ort: Paris (F)

Anuga FoodTec

Internationale Zuliefermesse für die Lebensmittel- und Getränkeindustrie

Datum: 23.-26. März 2027

Ort: Köln (D)

Achema

Internationale Leitmesse der Prozessindustrie

Datum: 14.-18. Juni 2027

Ort: Frankfurt am Main (D)

drupa

Weltweit führende Fachmesse für Drucktechnologien

Datum: 09.-17. Mai 2028

Ort: Düsseldorf (D)

Bezugsquellenverzeichnis